A Robust Procedure for Damage Detection from Strain Measurements Based on Principal Component Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Component Analysis vs. Independent Component Analysis for Damage Detection

In previous works, the authors showed advantages and drawbacks of the use of PCA and ICA by separately. In this paper, a comparison of results in the application of these methodologies is presented. Both of them exploit the advantage of using a piezoelectric active system in different phases. An initial baseline model for the undamaged structure is built applying each technique to the data coll...

متن کامل

Faults and fractures detection in 2D seismic data based on principal component analysis

Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...

متن کامل

Wavelet Speech Enhancement Based on Robust Principal Component Analysis

Most state-of-the-art speech enhancement (SE) techniques prefer to enhance utterances in the frequency domain rather than in the time domain. However, the overlap-add (OLA) operation in the short-time Fourier transform (STFT) for speech signal processing possibly distorts the signal and limits the performance of the SE techniques. In this study, a novel SE method that integrates the discrete wa...

متن کامل

Noise Reduction Based on Robust Principal Component Analysis ⋆

In this paper, we present a new speech enhancement method based on robust principal component analysis. In the proposed method, noisy signal is transformed into time-frequency domain where background noise is assumed as a low-rank component and human speech is regarded as a sparse compone. An inexact augmented Lagrange multipliers algorithm is conducted for solving the noise and speech separati...

متن کامل

Robust Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Key Engineering Materials

سال: 2013

ISSN: 1662-9795

DOI: 10.4028/www.scientific.net/kem.558.128